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QN T~+ PIIQBL@!Ol?@S FljOWOVEIiAN INFINITE CASCADE

USING CjU&LYGIIf’S J&PRO~TION*

1-. Some well-know results of C~aplygin’s method (reference 1)
are first presented. For the adiabatic law of the qtate of the gas

when p = kP7, the following relations hold:

(1.1)

where ~ is the gas pressure, P is the gas density, V is the
modulus of velocity, PO and PO are the values of p and P at

the critical point of the flow at which the velocity becomes zero,
k is the coefficient of proportionality, y is the ratio of specific
heats, and u and i3 are constants.

If the angle 9 between the velocity and the x-axis and the
magnitude T equal to V2/2U are considered, then, as was shown by
Chaplygin, the equations of gas motion assume the form

(1.2)

?iii=-$%i%%j
where ~ is the Velocity potential -d ~ is the stre@m function.

*’.~~opr~su o StrUlnQrnOltqkani: Beskonechnoi Reshetki Gazom v
Priblizhe~oi PostWovke S. A. Chaplygtia.” ‘FrikladnayaMatematika i
Mekhanika, T. XIU, No, 4, 1949$ PP. 449 - 456.
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Chaplygin

by introducing
the formulas

.

reduced these,equations
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to the very simple form
1

““1”~~(1.3)
A

the new variable U and the constant K defined by

‘1

u= J(~-T)B d~

Tm2 27

‘ I (1.4)

Chaplygin showed that for velocities far removed from the velocity of
sound, the magnitude K is approximately unity and equations (1.3)
can be integrated by assuming K equal to 1. I?or K = 1, these
equations go over into the conditions of Cauchy-Riemann; hence,
u . @ + ics will be an analytical function of the complex variable
f=v+iv.

The equation for the
the approximate treatment

dz . (aeiw + bei~)dv

The complex pressure

elementary vector along a streamline in
has, as is known (reference 3), the form

( 1 + (1-@ -B 1- (1-&2 )-@
a= ,b=

2 %2 ‘2-2 )
(1.5)

is given by the equation (reference 3)

y+f~= J s~ (e-iG -e-iw)dQ + pO(l - ‘fm2)B+1 dZ

2. The steady potential flow of a gas through an infinite
cascade according tothe well-known scheme of Kirchhoff with
separations of the jet is next considered. The vanes of the cas-
cade will be assumed to be plane (fig. 1).

Velocity of the gas in the flow at infinity is denoted by
Vml and its angle with the x--is by ,%1; veloc~ty of the *S ~

the jet at infinity is denoted by Vm2 and its angle with the

(1.6)
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x-axis by %2. The angle 9

x-axis lies within therange

3

between the velocity vectors and the

-2Yc<e<o.

The valocity field of the flow repeats itself for each dis-
placement by the pitch of the cascade, that is, by the vector he-ix

The condition of constancy of the mass flow for steady flow of’
the gas gives

Q=- %lVelhsin (A+%l) =%2K2n (2.1)

where Pml is the density of the gas at infinity in the flow,. pm2

is the densi~y of the gas at infinity in the jet, and n is the
width of the gas jet at infinity.

By making use cf expressions (1.1) for P, equation (2.1) can be
represented in the form

(2.2)

The behavior of the function f = Q + iv in the z-plane of the
gas flow is now considered. For simplicity, the function f is
assumed equal to zero at the critical point O of the flow (fig. 1).
From the relation

%g = Vsds‘g= 23s

it follows that on moving along the streamline W= O, the function
q varies monotonically from -~ at the point E (infinity in the
flow) to += at the point C (infinity in the jet) and passes
through the zero value at the critical point O where the stream-
line branches. The value of the potential f =
critical point 0’ displaced by the period he

-~~+ iy at the
rela$ive to

the point O is found and (fig. 1)

ql(o’) =

where MM’

J vsds=Jvsds+Jvs’~+JvsdsHfol OM MM‘ M,O1
is a cut parallel to the axis of the cascade.
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The first and last integrals mutually cancel and therefore
a~ MM’ approaches infinity in the fl~j the followiri~equation is.
obtained:

Furthermore, from the relation

where dQ is the quantity of gas flowing in
infinitely near streamlines, it follows that
by the pitch of the cascade the function ~
equal to Q/Po. Hence,

()*(o’)=-$=” 1312~ hVml sin
2a

unit time between
on being displaced
receives an increment

(A + eml) (2.4)

In this manner, the f-plane with double-sided cuts along the
half-straight lines parallel to the axis of reals (fig. 2) corresponds
to the region of the gas flow “(fig.1). All the cuts, because of the
ruie by which the cascade was constructed, are obtained from the
initial one (the positive v-axis) by simultaneous displacement along
verticals and.horizontals at distances that are multiples of Q/p.

and V*l h cos (~ + eml), respectively.

Because w . 0 + io is an analfiic function of f=q+i~,
the problem may be solved by relating these functions with the aid
of a paremeter that varies in the upper semicircle of unit radius,
as in the Levi-Civita method.

By considering the rectilinearity of the cuts in the f-plane,
the analytic function f(t) ‘is found, which brings about the con-
fo-rmaltransformation of the f-plane into the semicircle t. In the
t-plane, the flow of an ideal fluid about the boundary of the semi-
circle’is constructed. For this purpose, sources and vortices of
streGgths and intensities are located, as shown in figure 3, at the

‘1 that are symmetrical with respect to the circlepoints %= and ZW ..

and at the mirror reflection of these points in the diameter, that

is, at the points i= and tin-l. At the origin of coordinates we

place a sink of strength 2q (and a simiiar sink at infinity).
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In the constructed flow W the t-plane, the upper semicircle of
unit radius and the diameter of the semicircle are, of course, stream-
M.nes so that the stream function ~ maintains a constant value at
the-boundary of the uppefiSemicircle” ~; k ~“hif-plane, this
boundary will correspond to straight cuts. The complex potential
of the constructed flow will have the form,

f(t) .J!:T
[
(7 + iq.)log.(t

()
-b)+ (-y+iq) log t-++

()(-7 +“iq) log (t - ~m) + “(7+ iq) iOg t - & - 2iq log t + constant1
or

f(t) = *
[ ( )
(“I’+iq) log t+~-2M -

(
(Y-iq) log t+~-2fi )1+constant (2.5)

where T is the intensity of the vortex and q is the strength of
the sources, and

M
()

~$tm+&
m

The arbitrary constant in equation (2.5) is chosen so that
f(t) becomes zero at a certain point t = eci, the position of
which will be subsequently determined.

Because the logarithm has multiple values, the upper semicircle
of the t-plane will correspond to an f-plane with an infinite number
of straight cuts w= kq(k = O, &l, A2,...), where v changes from
k’? to +, as easily follows from equation (2.5) by substituting
t . eie (the arc of the semicircle) and t = t~ where t~ is the
real amount of the interval (-1, +1), the diameter of tliesemicircle.

In this manner, the function (2.5) establishes a conformal
mapping of the upper semicircle of the t-plane on the f-plane with
the double-sided CU%S represented h figure 2.

The function (2.5) is used,.inthe work of N.,1. Akhiezer .
(refe&enc6 2) where it is obtained by successive conformal mappings:
the f-plane on the half plane, the half plane on the unit circle,
and finally the circle on the upper semicircle.
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The point t . 0 is carried by the transformation (2.5) into
f =“+= ‘sothat the radii AC and BC go over into the infinite
segpents (figs. 2 and 3). The conformal property of the transfor-
mation breaks down at the points t=-l,t= +1, andt=eic
(the point eii corresponds to the origin of the double-sided cut
in the f-nlane). The condition df/dt = O for t = ei~ gives

LA.4=~ (2.6)
cos c-M Cos C-R

Jh order to obtain the elements of the motion, an expression for
the derivative df/dt is required that is represented in the form

df Q
(t-ei~)(t-e-i~)(t-t-l)

z=
(2.7)

7((t-tJ(t-&-l) (t-&J(t-&-1)

The quantities y and q are next determined. When a point in
the z-plane ? the gas flow is displaced by the pitch of the

icascade he-l , the point t, corresponding to the point in the z-plane,
goes over from one sheet of the Riemann surface to the next, passing
once around the point E (t = %), as a result of which the function
f(t) receives an increment y + iq, as follows from equation (2.5).
Because the corresponding increments of the functions V and $
are equal to Vq h COS (h + al) and Q/po, respectively, the

following equations are obtained:

(2.8)

ltromthe expression for y, it is evident, among other things,
that y = O corresponds to the case where the approaching flow has a
velocity at infinity perpendicular to the axis of the cascade.

3. The function w(t) is next determined. The function
w = 9+ io is regular within the semicircle t and has the following
properties:

10 At the point O(t = eie), the real part of the function @
has a discontinuity, equal to n, because of the branching of the
streamline. On the arc AO the angle 6 is equal to -fi and on
the arc OB it is equal to zero.
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2. On the real diameter of the semicircle, the function
w(t) = (3+ f(l is real because its imaginary part 0 = O on the.,
fre”e“Jetswhere T =Tm2i

3. At the origin of coordinates t = 0, the function W(t)
is equal to %2 because at infinity in the jet 0 = O and

e = E&.

l?romthe preceding discussion, it follows
w(t) admits of analytical continuation in the
may be obtained by the Schwarz formula. Thus,

that branch of the logarithm being chosen that

that the function
lower semicircle and

ei< -t
=ilog— (3.1)

1- ~eic

is equal to ic for
t=o. If the third property is used from equation (3.1) for t = O,
it is found that 6 = -em2. The value of t- is obtained from

equation (3.1) by making
in the stream

u(tJ = E&l +

whence (reference 2)

use of the value of the velocity at infinity

7/ch(sml - Cos (%1 - %2)
It=i =

cho =1 - Cos (eml + em2)

shuel sin @02
arg to = arc tg

ChUml COS %2 - COS @ml

(3.2)

The pressure of the gas on a blade of the cascade is then com-
puted. On the forward side of the plate, which is a streamline, the
pressure is obtained by equation (1.6) where V= is the velocity

in the stream..

The back side of the plate is’~ the gas”at re&;where the
pressure is constant and equal to

P= p. (1 - T@2)~+l
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If the factthat”along a streamline dq = df is considered, a
formula is obtained for the complex pressure in the form

or

Po vm~
Y+ix =-

2 J
(e-i@

Y- ix = s%y(ei.w-

where the inte@?ation is taken over the
t-plane in the clockwise direction. BJ

-e-iw) df

em) ~d-t
dt

(3.3)

upper semicircle of the
considering that after

analytical continuation in the lower semicircle the function W(t)
assumes conjugate values at conjugate points, the following relation
is obtained:

PoU2
Y-ix=-

S
ei~(t) ~ dt (3.4)

2
Itl =1

dt

where the integration is taken over the entire arc of the unit
circle in the counterclockwisedirection.

Substituting the value of df/dt from equation (2.7) in
equation (3.4) gives

P()!!~mz
y-ix=- ~fl J eiw(t) (t-ei~)(t-e-ic)(t-t-l)dt

(t-t=)(t-t@-l)(t-t~ (t-~-l)
(3.5)

Itl = 1

Tliefunction und~r the integral sign in equetion (3.5) has
three poles, t = t- t = t~~ and t = Oj all of which lie within the

unit circle. The residues of the function at these points are,
respectively,

(tz - eic)(tm - e-ie)
exp iu~l

(%=- &)(t= - zm-~)
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From equation

9

(2.6), however, it follows that

Hence, the residues may be represented in the form

- exp ie~

From equation (3.5), applying the theorem on residues gives

exp iem2 +

iq) exp(iea~ +Uml)](y+iq) exp(i%~ -Um~) - (7 -

If the real and imaginary parts are separated,

L+)V*
Y=-~ [

2q sin %2 + (~ cos eml - q sin %1) exp(-a=l) -

~o%z
[x=-—- 2q C03 &2 + (7 sin

2

The velocity on the contour of
finite; the total-pressure force on

(3.6)‘%1) em? %]

eml + q cos 8ml) exp(-O=l)-

e=l) exp~=fl (3.7)

the blade is assumed to remain
the blade will then be perpen-

dicular to the velocity and therefore X = 0, that is,

_.—-
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# (y sin eal + q cos C&l) exp(- Uml j -

(y sin al - q cos %1) expoel = 2q cos %2 (3.8)

Thus”the pressure force of the gas on a blade of the cascade is
by equations (3.6) and (2.8) equal to

‘Ov~iv~2
Y=-

2
h{-2(1-k# sin(A + 801) sin em2 +

()
[co.(A+em,)co,8@, + ~-~ sin (A + eal)”sin dml] exp(-aml) -

- (’ J%:;

2P
[.Os(A+e@l)cO. e@, ——— 1sin (A+ e-l) sin eml] exp Uml

(3.9)

If in equation (3.9) P is set equal to O and the
magnitude O@l, determined by equations (1.4), is correspondingly

replaced by l-l

J

dT Tml1 log —. %1
Oml= —=.

2T 2 TCV2
= logG

T-2

the formula for the pressure is obtained for the case of an ideal
fluid (reference 2).

In order to determine the angle A, entering equation (3.s),
between the axis of the cascade and the x-axis, the ratio (2.6)
and the values of T and q from equations (2.8) are used. Thus

ctg(A + eml) = i (1=Y 2c0sfi:!+”) (3.10)

In order to compute the length of a cascade blade, equation (1.5)
;s used. Replacing dv by df gives

( 1- teic - eic
dz=~a

)

(t -.eic)(t - e-ic)(t -t-l)dt
eic_ ~

+b
t:i~ - 1 (t - tm)(t - +J(t - tm-l)(t - Q-1)
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This expression may be put in the form

dz = ~gl(t)d~ + ~ g2(t)dt

11

(3.11)

where

g+) =
eiC(t-e-i6)2.(t-t-1)

(t-t&)(t-&-l) (t-&J (t-fro-l)

-iqt-ei+(t-t-l)
@) = e

(t-t@) (t-t;l) (t-tm) (t-%m-l)

The expansions of gl(t) and g2(t) into the sum of simple

fractions are of the form

+) % + %
E3V(t) = —+—

% + %+— (u = 1,2)
t-tin t-f= t-to-l t-~-l T

where

Bl = D2 . ~ exp(i9ml +Oml)

El = -e-it

E2 = -eic

Tnese expressions for the coefficients are obtained if the
following relations are used:

[ _____ —.
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(tm-eic ) (tm-e-i~)
_ y+lq

(%-U) (k-u-l) 21Q

If equation (3.11) is inte~ated over the upper semicircle in
the t-piane in a counterclockwisedirection and if relation
z(-1)-z(l) = 2 is used, the following expression for the length of
a cascade blade is obtained:

[

-l-t= -1-:= -l-tin-l
1 = ~ Allg —— + Bllg — + Cllg +

l-tin 1-** Mm-l

1Ellg (-1) +

-1-L -1-i-tm
+ B21g — + Czlg +

l-+a l-tin-l

~zlg !-1)1
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The

shown in

[.. .

t J+l ~ -1+1 .
. 92 (Al + Cl)lg ~.l + (Bl + Dl)ig ~ +

Jt 3.-1-1

1[ IJl+l
(Al +Bl +El)lg(-l) +$ (4-2“2)lg-

t:’-l +

5=-1+1
(B2 + D2)lg —

t; ’-l
+ (A2 + B2 + E2)lg (-1)1

[ Rl
. ~(Al+Bl+CI+DI)QE+

(A1+C1-BI - _ 1%)+(Al+ B1+E1)”ni +

R1
(Al + Bl + Cl + Dl)lg ~ +

(Al + Cl - Bl - 1Dl)+(cl+D1+E2)fi~
magnitudes RI, R2) and u that enter this equation are

fimzce 4. Substituting the values of the coefficients and
making use of equation (5.8) g::i’esthe following expression for
the length of a blade:

Rl
2=+~(a+b)cos&2 lg—+

R2

(Y CGS 9m1 + q sin 8ml) exp~ml]+

Q# [(, Cos e=, - q sin eml) exp(-uml)-

(7 cos f3ml+ q sin 8m~) exp %1]+ qa sin %2

13

.,,
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The formula for the length”of a blade in the case of an ideal fluid
(reference2) is obtained from the preceding equation for p = O
if

b=O

q = -Vml h sin (~+ eml)

vml
‘ml =lgG
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Figure 3.

Figure 4.
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